Оценка несущей способности и экспериментальные исследования многослойной кирпичной кладки многоквартирного жилого комплекса в г. Астане

Сотрудниками Казахстанского многофункционального института реконструкции и развития при РГП на ПХВ КарГТУ (КауМиРР) в 2015 году было проведено экспертное обследование и оценка технического состояния строительных конструкций объекта «Многоквартирный жилой комплекс в г. Астане» [1].

Первоначальным проектом предусмотрено строительство восьми 5-этажных сблокирован-
ных блок-секций изломанной формы. Является предметом обследования четыре блок-секции (подъезды 1...5) объединены между собой и со- ставляют пятиэтажный жилой дом изломанной конфигурации в плане с общей площадью 54,90х18,75 м в пределах разбивочных осей «1-8, А-Г». Высота цокольного этажа проектируется 2,8 м; высота последующих этажей – 3,0 м, высота технического этажа (чердака) 1,8 м. Проектом предусматривается применение кирпича силикатного с толщиной стен 380 мм и облицованной керамической кирпичом. В наружных стенах 1 этажа в качестве утеплителя между основной кирпичной кладкой и облицовочным кирпичом устроен слой керамизитобетона, типового этажа – утеплитель ППЖ-200 [2, 3].

Для оценки несущей способности кирпичных стен выполнен поверочный расчет. Расчетная схема объекта «Многоквартирный жилой комплекс в районе индивидуальной застройки "Юго-Восток" в г. Астане принята на основании проектных данных и материалов детально-инструментального обследования. Расчетная схема формировалась в многофункциональном программном комплексе «МОНОМАХ-САПР 2013» для расчета, исследования и проектирования железобетонных и каменных конструкций (рисунок 1). Марка кирпича М100 и марка раствора М25 приняты согласно лабораторным испытаниям.

Для выявления технического состояния несущих строительных конструкций строящегося многоквартирного жилого комплекса проведен комплекс обследовательских работ, в связи с длительными перерывами в строительстве и изменением объемно-планировочного решения. Блок-секция данного комплекса представляет собой кирпичное бескаркасное здание с несущими на-
ружными и внутренними стенами. Многослойная кладка наружных стен выполнена по серии 2.130-8 типа А64.

Анализ несущей способности кирпичных стен объекта выполнен в программе «КИРПИЧ» программного комплекса «МОНОМАХ-САПР 2013» в уровне простенков (h=2.1 м), низа перемычки (h=2.38 м) и низа плиты перекрытия (h=2.78 м).

По результатам поверочного расчета кирпичных стен выявлены 238 участков покольного, первого, второго и третьего этажей, несущая способность которых не обеспечена (коэффициент запаса составляет менее 1) и требует усиления [1]. Причем наиболее слабые участки стен выявлены в покольном этаже, где коэффициент запаса несущей способности кирпичных стен составляет 0,5 – 0,02. Техническое состояние простенков и фрагментов стен, несущая способность которых согласно результатам детального инструментального обследования, а также поверочного расчета с учетом фактических марок кирпича М100 и раствора М25 не обеспечена, оценивается по категории IV (предварительная каменная конструкция).

При оценке несущей способности конструкций возникла необходимость в экспериментальном подтверждении прочностных и деформационных характеристик кирпичной кладки наружных стен:

- из-за низкой марки кладочного раствора М15...М25;
- накачественного заполнения раствором вертикальных и горизонтальных швов (пускастовка), нарушения горизонтальности ряда, использования на отдельных участках непроектного кирпича (керамического пустотного и шелевого, вместо полнотелого силикатного);
- несоблюдения порядки армирования сеткой;
- использования различных видов утеплителя в наружных кирпичных стенах (по факту утеплитель керамзитобетон ρ = 1059 кг/м³);
- наличия вертикальных трещин вдоль простенков шириной раскрытия до ε = 0,1...1,5 мм, пересекающих более 7 рядов кладки.

Сотрудниками института КазМИРР и Томского государственного архитектурно-строительного университета (ТГАСУ) проведены экспериментальные исследования на действие центрального и внцентреннонекого сжатия 4 образцов кирпичной кладки, извлеченных из подошвенной части наружной стены здания (рисунок 2) [4].

Статические испытания отобранных образцов кирпичной кладки проведены на гидравлическом прессе ГР-1000М.

Экспериментальные образцы КК-1 и КК-3 испытывались на действие центральной сжимающей нагрузки, а образцы КК-2 и КК-4 внцентренно приложенной сжимающей нагрузки. Схемы испытаний представлены на рисунке 3.
Нагрузка на образцы прикладывалась ступенчато по 50,0 кН на каждом этапе испытаний. Последующее нагружение образца проводилось после стабилизации деформаций с выдержкой в течение трех минут.

В результате испытаний образцов определены четыре основные стадии деформированного состояния кирпичной кладки:

- первая — соответствует работе фрагмента кладки без трещин;
- вторая соответствует появлению трещин между несущей стеной и керамзитобетонным утеплителем, объединенным с лицевой кладкой;
- третья стадия деформирования — появление трещин в несущей стене;
- четвертая стадия характеризовалась активным трещинообразованием в несущей стене.

При этом установлены значения нагрузок для всех образцов по стадиям деформирования (см. таблицу).

<table>
<thead>
<tr>
<th>Образец</th>
<th>Стадия №2</th>
<th>Стадия №3</th>
<th>Стадия №4</th>
<th>Разрушенный</th>
</tr>
</thead>
<tbody>
<tr>
<td>КК-1</td>
<td>76,5 кН</td>
<td>—</td>
<td>420 кН</td>
<td>753 кН</td>
</tr>
<tr>
<td>КК-2</td>
<td>93 кН</td>
<td>236 кН</td>
<td>346 кН</td>
<td>451 кН</td>
</tr>
<tr>
<td>КК-3</td>
<td>67 кН</td>
<td>324 кН</td>
<td>574 кН</td>
<td>813 кН</td>
</tr>
<tr>
<td>КК-4</td>
<td>103 кН</td>
<td>274 кН</td>
<td>437 кН</td>
<td>585 кН</td>
</tr>
</tbody>
</table>

Образцы кирпичной кладки КК-1, КК-3 после разрушения от центрального сжатия и образцы КК-2, КК-4, разрушенные действием внешцентрального сжатия, показаны на рисунке 4.

Дополнительно специалистами института КазМИР проведены испытания еще 2 натурных образцов кирпичной кладки, воссозданных в лабораторных условиях (рисунок 5) и соответствующих фактической кирпичной кладке на объекте.

Результаты испытаний показали, что при центральном сжатии разрушение образца произошло от действия нагрузки равной 1000 кН, а при внешцентральном сжатии от нагрузки в 700 кН.

Выводы:

- установлено для центрально сжатых образцов отслоение лицевого слоя с керамзитобетоном от несущей стены для образца КК-1 при нагрузке 76,5 кН, что составляет 10,2% от разрушающей, для образца КК-3 при нагрузке 67 кН, что составляет 8,2% от разрушающей. Появление трещин в несущей стене для образца КК-1 произошло при нагрузке 420 кН, что составляет 55,8% от величины разрушающей нагрузки, для образца КК-3 соответствует нагрузке 324 кН, что соответствует 39,9% от разрушающей.

- установлено для внешцентрально сжатых образцов отслоение лицевого слоя с керамзитобетоном от несущей стены для образца КК-2 при нагрузке 93 кН, что составляет 20,6% от разрушающей, для образца КК-4 при нагрузке 103 кН, что составляет 17,6% от разрушающей. Появление трещин в несущей стене для образца КК-2 произошло при нагрузке 236 кН, что составляет 52,3% от величины разрушающей нагрузки, для образца КК-4 соответствует нагрузке 274 кН, что соответствует 46,8% от разрушающей.

- определены значения модулей деформаций для образцов кирпичной кладки при центральном и внешцентральном сжатии.

По результатам экспертного обследования, результатов поверхностного расчета и материалов испытаний окончательное техническое состояние несущих наружных кирпичных стен было оценено как неудовлетворительное (ограниченно-рабоотоспособное), требующее разработки проекта усиления.
Расчет на изгиб плит проезжих частей модульного путепровода при ремонте городских коммунальных сетей

Ключевые слова: дорожная пробка, затар, мостовой переезд, ортотропная плита, модульный путепровод, мост.

Различные городские коммунальные сети (тепловые, водопроводные, кабельные и т.п.) по планировке современных городов обычно располагаются под проезжими частями дорог, что вызывает перекрытие городских транспортных артерий на длительное время и необходи́мость организовывать объезды ремонтных участков. Это способствует образованию автомобильных пробок из-за увеличения концентрации автомобилей в связи с объездами ремонтных участков, увеличивает уровень аварийности, ухудшает транспортную логистику города, его экологию и т.п.

В таких условиях вместо объездов ремонтных участков предлагаем организовывать прямые мостовые переезды через рвы и траншеи коммунальных сетей, не перекрывая автомобильного движения по смежным магистралям города.

В качестве таких прямых переездов предлагаются новая мостовая конструкция — модульный коммунальный путепровод (рисунок 1). Путепровод устанавливается через ремонтные рвы коммунальных сетей и позволяет не останавливать транспортные потоки на все время ремонта подземных инженерных сетей.

Применение таких мостовых переездов значительно улучшает транспортную логистику в городе во время ремонтных работ на коммунальных сетях: уменьшает образование автомобильных пробок, отсутствуют вынужденные объезды ремонтных участков, снижаются неудобства для водителей автомобилей и жителей районов города, в связи с вынужденными объездами транспорта и т.п.

Модульный коммунальный путепровод собирается из унифицированных сборно-разборных...